Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Indian J Biochem Biophys ; 2022 May; 59(5): 536-551
Article | IMSEAR | ID: sea-221532

ABSTRACT

Identifying the key proteins among different types of human disease-causing coronaviruses is essential for the molecular mechanism and thereby designing potential drug molecules. Eight selected proteins of seven types of disease-causing coronaviruses, viz.SARS-CoV-2 (severe acute respiratory syndrome coronavirus2), SARS-CoV (severe acute respiratory syndrome coronavirus), MERS-CoV (middle east respiratory syndrome coronavirus), Human coronavirus OC43, Human coronavirus HKU1, Human coronavirus 229E and Human coronavirus NL63, were chosen for the comparison. Further, an attempt has been made to explore the most important host-pathogen interactions with a special focus on spike (RBD) protein region as this region deemed to be functionally most important. Epitope region was also identified which helps in the design of epitope-based vaccines. The structural comparison carried out among the seven types of human coronaviruses has revealed the molecular level details on the similarity among this series. This study has facilitated the identification of the important residues in the studied proteins which control the key functions such as viral replication and transmission. Thus, exploring the protein space in the family of coronaviruses, provide valuable insights into the molecular basis associated with the role of proteins and viral infections, which is expected to trigger the identification of the drug targets for coronaviruses infections, in a rational way.

2.
Indian J Biochem Biophys ; 2022 May; 59(5): 536-551
Article | IMSEAR | ID: sea-221531

ABSTRACT

Identifying the key proteins among different types of human disease-causing coronaviruses is essential for the molecular mechanism and thereby designing potential drug molecules. Eight selected proteins of seven types of disease-causing coronaviruses, viz.SARS-CoV-2 (severe acute respiratory syndrome coronavirus2), SARS-CoV (severe acute respiratory syndrome coronavirus), MERS-CoV (middle east respiratory syndrome coronavirus), Human coronavirus OC43, Human coronavirus HKU1, Human coronavirus 229E and Human coronavirus NL63, were chosen for the comparison. Further, an attempt has been made to explore the most important host-pathogen interactions with a special focus on spike (RBD) protein region as this region deemed to be functionally most important. Epitope region was also identified which helps in the design of epitope-based vaccines. The structural comparison carried out among the seven types of human coronaviruses has revealed the molecular level details on the similarity among this series. This study has facilitated the identification of the important residues in the studied proteins which control the key functions such as viral replication and transmission. Thus, exploring the protein space in the family of coronaviruses, provide valuable insights into the molecular basis associated with the role of proteins and viral infections, which is expected to trigger the identification of the drug targets for coronaviruses infections, in a rational way.

3.
Indian J Biochem Biophys ; 2022 May; 59(5): 536-551
Article | IMSEAR | ID: sea-221529

ABSTRACT

Identifying the key proteins among different types of human disease-causing coronaviruses is essential for the molecular mechanism and thereby designing potential drug molecules. Eight selected proteins of seven types of disease-causing coronaviruses, viz.SARS-CoV-2 (severe acute respiratory syndrome coronavirus2), SARS-CoV (severe acute respiratory syndrome coronavirus), MERS-CoV (middle east respiratory syndrome coronavirus), Human coronavirus OC43, Human coronavirus HKU1, Human coronavirus 229E and Human coronavirus NL63, were chosen for the comparison. Further, an attempt has been made to explore the most important host-pathogen interactions with a special focus on spike (RBD) protein region as this region deemed to be functionally most important. Epitope region was also identified which helps in the design of epitope-based vaccines. The structural comparison carried out among the seven types of human coronaviruses has revealed the molecular level details on the similarity among this series. This study has facilitated the identification of the important residues in the studied proteins which control the key functions such as viral replication and transmission. Thus, exploring the protein space in the family of coronaviruses, provide valuable insights into the molecular basis associated with the role of proteins and viral infections, which is expected to trigger the identification of the drug targets for coronaviruses infections, in a rational way.

4.
Journal of Bacteriology and Virology ; : 1-8, 2020.
Article in Korean | WPRIM | ID: wpr-816642

ABSTRACT

The 2019 novel coronavirus disease (COVID-19) outbreaks that emerged in Wuhan city, Hubei province, have led to a formidable number of confirmed cases that resulted in >5,700 deaths globally, including 143 countries in all 6 continents. The World Health Organization declared a Public Health Emergency of International Concern with a very high level of global risk assessment. Severe acute respiratory syndrome (SARS)-coronavirus-2 (SARS-CoV-2), the agent of COVID-19, has >79% nucleotide sequence homology to SARS-CoV; therefore, both belong to the genus betacoronavirus and subgenus sarbecovirus. The S1 domains of the two appeared to share the cellular receptor ACE2, but revealed a much higher S1-ACE2 binding affinity. As seen in many other human coronaviruses, SARS-CoV-2 also shows respiratory infection, but the basic reproductive number (R₀) in transmission and the clinical latency are quite dissimilar from those of SARS- or MERS-CoVs. Many scientists infer that the time point of cross-barrier transfer from bats to mediate animals or to humans should be a rather recent event based on the full-length genome analyses obtained from the very first patients. Copy-choice polymerization, which often leads to a significant genome recombination rate in most coronaviruses, predicts the continued emergence of novel coronaviruses.


Subject(s)
Animals , Humans , Base Sequence , Chiroptera , Coronavirus , Disease Outbreaks , Emergencies , Genome , Middle East Respiratory Syndrome Coronavirus , Molecular Biology , Polymerization , Polymers , Public Health , Recombination, Genetic , Risk Assessment , Severe acute respiratory syndrome-related coronavirus , Severe Acute Respiratory Syndrome , World Health Organization
5.
Braz. j. microbiol ; 44(1): 335-339, 2013. ilus, tab
Article in English | LILACS | ID: lil-676924

ABSTRACT

Human coronaviruses (HCoVs) are considered one of the most common respiratory viruses associated with respiratory tract illnesses. An emergent human coronavirus was identified as the causal agent of an epidemic of severe acute respiratory syndrome (SARS) during 2002-2003. The severity of the disease combined with its rapid spread requires the continuous surveillance of coronaviruses in worldwide populations. Epidemiological and clinical data of HCoVs infectious in the Brazilian population are scarce and restricted to one or two groups of patients. Our study aimed to investigate retrospectively the presence of HCoVs in different populations of São Paulo presenting acute respiratory tract infections (ARIs) during the years of 2001-2010. A pancoronavirus RT-PCR was performed in this study. Coronaviruses were detected in 126 (11.5%) of 1,087 specimens. Peaks detection frequency was observed during 2002-2004 and 2008-2009, with the highest detection in 2008. The prevalence of HCoVs was higher among children with heart diseases (24.6%), patients under stem cell transplantation program (24.3%) and renal transplanted patients (20.2%). Coryza, cough and fever were the most common symptoms at presentation of positive cases and wheezing, a lower respiratory tract infection symptom was reported by 12% of the total, and 27% of high at-risk patients. HCoVs may have an important role among patients with underlying conditions and transplanted ones


Subject(s)
Humans , Coronavirus Infections , /isolation & purification , Diagnostic Techniques, Respiratory System , Respiratory Tract Diseases , Reverse Transcriptase Polymerase Chain Reaction , RNA-Directed DNA Polymerase , Epidemiology , Methods , Patients
SELECTION OF CITATIONS
SEARCH DETAIL